
Chapter 1

Learn in Public

This is a free chapter of the Coding Career Handbook, the most
important chapter in the book and the best version of the original
essay begun 2 years ago. It has been updated and refreshed for
2020, and it’s yours to keep. Enjoy!

There are many principles offered in this Coding Career Handbook, but
this is chief among them: Learn in Public.

1.1 Private vs Public

You have been trained your entire life to learn in private. You go to
school. You do homework. You get grades. And you keep what you
learned to yourself. Success is doing this better than everyone else around
you, over and over again. It is a constant, lonely, zero-sum race to get
the best grades. To get into the best colleges. To get the best jobs. If
you’ve had a prior career, chances are that all your work was confiden-
tial. And of COURSE you don’t share secrets with competitors!

Tech is a fundamentally more open industry. We blog about our out-
ages. We get on stage to share our technical achievements. We even
give away our code in open source. However, most developers act like
tech is the same as every other industry. Most developers bottle up ev-
erything they learn in their heads, all the while hoping their careers

https://www.learninpublic.org/
https://www.swyx.io/writing/learn-in-public/
https://www.swyx.io/writing/learn-in-public/


2 Chapter 1: Learn in Public

grow linearly with years of experience at the right companies working
on the right projects for the right bosses. Most developers strictly con-
sume technical content without actually creating any themselves.

This is a perfectly fine way to build a career: ∼99% of developers op-
erate like this. Scott Hanselman calls them Dark Matter Developers —
you can infer their presence from GitHub stars and package downloads,
but it’s hard to find direct evidence of their work. Their network mainly
consists of current or former coworkers. When job hunting, they start
from zero every time. They find opportunities only from careers pages
or recruiters. To get an interview, they must serialize years of experi-
ence down into a one page resume by guessing employers’ opaque de-
serialization and filtering algorithms. Then they must convey enough
in 30-60 minute interviews to get the job. Even while on the job, pick-
ing up a new technology is a solitary struggle with docs and books and
tutorials.

There is another way. You can Learn in Public instead.

What do I mean by learning in public? You share what you learn, as you
learn it. You Open Source your Knowledge (Chapter 13). You build
a public record of your interests and progress, and along the way, you
attract a community of mentors, peers, and supporters. They will help
you learn faster than you ever could on your own. Your network could
be vast, consisting of experts in every field, unconstrained by your org
chart.

When job hunting, prospective employers may have followed your work
for years, or they can pull it up on demand. Or — more likely — they
may seek you out themselves, for one of the 80% of jobs that are never
published. Vice versa, you take much less cultural risk when you and
your next coworkers have known each other’s work for years. And when

https://www.hanselman.com/blog/DarkMatterDevelopersTheUnseen99.aspx
https://www.npr.org/2011/02/08/133474431/a-successful-job-search-its-all-about-networking
https://www.npr.org/2011/02/08/133474431/a-successful-job-search-its-all-about-networking


Getting Started 3

picking up a new technology, you can call on people who’ve used it in
production, warts and all, or are even directly building it. They will talk
to you — because you Learn in Public.

I intentionally haven’t said a single word about “giving back to the dev
community”. Learning in Public is not altruism. It is not a luxury or a
nice-to-have. It is simply the fastest way to learn, establish your net-
work, and build your career. This means it is also sustainable, because
you are primarily doing it for your own good. It just so happens that, as
a result, the community benefits too. Win-win.

You never have to be 100% public. Nobody is. But try going from 0%
to 5%. Or even 10%! See what it does for your career.

Tip: Some vulnerable people have personal safety or other reasons
to not Learn in Public. These are totally valid. Since the majority
of the time, we all are still Learning in Private, it’s worth think-
ing about how to do that well too. Refer to Chapter 32 for a fuller
discussion.

1.2 Getting Started

Make it a habit to create “learning exhaust” as a non-negotiable and
automatic side effect of your own learning:

• Write demos, blogs, tutorials and cheatsheets

• Speak at meetups and conferences



4 Chapter 1: Learn in Public

• Ask and answer questions on Stack Overflow or Reddit

• Make YouTube videos or Twitch streams

• Start a newsletter

• Draw cartoons (people loooove cartoons!)

Whatever your thing is, make the thing you wish you had found
when you were learning. Document what you did and the problems you
solved. Organize what you know and then Open Source Your Knowl-
edge.

You catch a lot of friends when you are Helpful on the Internet. It
is surprisingly easy to beat Google at its own game of organizing the
world’s information. Even curating a structured list of information is
helpful. I once put together a list of Every Web Performance Test Tool
on a whim and it got circulated for months! People resharedmy list and
even helped fill it out.

“But I’m not famous, nobody will read my work!” — you, probably

Don’t judge your results by retweets or stars or upvotes — just talk to
yourself from three months ago. Resist the immediate bias for atten-
tion. Your process needs to survive regardless of attention, if it is to
survive at all. Eventually, they will come. But by far the biggest benefi-
ciary of you helping past you, will be future you. If (when) others benefit,
that’s icing on the cake.

This is your time to suck. When youhave no following andno personal
brand, you also have no expectations weighing you down. You can ex-

https://code-cartoons.com/
https://wizardzines.com/
https://arkwright.github.io/scaling-react-server-side-rendering.html
https://www.swyx.io/writing/friendcatchers/
https://www.swyx.io/writing/webperf-tests/


But I’m Scared 5

periment with different formats, different domains. You can take your
time to get good. Build the habit. Build your platform. Get comfortable
with your writing/content creation process. Ignore the peer pressure
to become an “overnight success” — even “overnight successes” went
through the same thing you are.

I get it: We all need feedback. If you want guaranteed feedback, Pick
Up What Others Put Down (Chapter 19). Respond to and help your
mentors on things they want, and they’ll respond to you in turn. But
sooner or later, you’ll have to focus on your needs instead of others.
Then you’re back to square one: having to develop Intrinsic Drive in-
stead of relying on External Motivation.

1.3 But I’m Scared

Try your best to be right, but don’t worry when you’re wrong. Keep
shipping. Before it’s perfect. If you feel uncomfortable, or like an im-
postor, good. That means you’re pushing yourself. Don’t assume you
know everything. Try your best anyway and let the Internet correct you
when you are inevitably wrong. Wear your noobyness on your sleeve.
Nobody can blame you for not knowing everything. (See Lampshading,
Chapter 34, for more)

People think you suck? Good. You agree. Ask them to explain, in
detail, why you suck. Do you want to feel good or do you want to be
good? If you keep your identity small and separate your pride from your
work, you start turning your biggest critics into your biggest teachers.
It’s up to you to prove them wrong. Of course, if they get abusive, block
them.

http://www.paulgraham.com/identity.html


6 Chapter 1: Learn in Public

You can learn so much on the Internet, for the low, low price of
your Ego. In fact, the concept of Egoless Programming extends as
far back as 1971’s The Psychology of Computer Programming. The first
of its Ten Commandments is to understand and accept that you will
make mistakes. There are plenty of other timeless takes on this idea,
from Ego is a Distraction to Ego is the Enemy.

Don’t try to never be wrong in public. This will only slow your pace
of learning and output. A much better strategy is getting really good
at recovering from being wrong. This allows you to accelerate the
learning process because you no longer fear the downside!

1.4 Teach to Learn

“If you can’t explain it simply, you don’t understand it well
enough.” - Albert Einstein

Did I mention that teaching is the best way to Learn in Public? You only
truly know something when you’ve tried teaching it to others. All at
once you are forced to check your assumptions, introduce prerequisite
concepts, structure content for completeness, and answer questions you
never had.

Probably the most important skill in teaching is learning to talk while
you code. It can be stressful but you can practice it like any other skill.
It turns a mundane talk into a captivating high-wire act. It makes pair
programming a joy rather than a chore. My best technical interviews
have been where I ended up talking like I teach, instead of trying to

https://www.goodreads.com/book/show/1660754.The_Psychology_of_Computer_Programming
https://blog.codinghorror.com/the-ten-commandments-of-egoless-programming/
https://josebrowne.com/on-coding-ego-and-attention/
https://www.goodreads.com/book/show/27036528-ego-is-the-enemy


Mentors, Mentees, and Becoming an Expert 7

prove myself. We’re animals. We’re attracted to confidence and can
smell desperation.

1.5 Mentors, Mentees, and Becoming an Ex-
pert

Experts notice genuine learners. They’ll want to help you. Don’t tell
them, but they just became your mentors. This is so important I’m
repeating it: Pick up what they put down. Think of them as offer-
ing up quests for you to complete. When they say “Anyone willing to
help with __ __?”, you’re that kid in the first row with your hand already
raised. These are senior engineers, some of the most in-demand people
in tech. They’ll spend time with you, one-on-one, if you help them out
(p.s. There’s always something they need help on - by definition, they
are too busy to do everything they want to do). You can’t pay for this
stuff. They’ll teach you for free. Most people miss what’s right in front
of them. But not you.

“With so many junior devs out there, why will they help me?”, you ask.

Because you Learn in Public. By teaching you they teach many. You
amplify them. You have the one thing they don’t: a beginner’s mind.
See how this works?

At some point, people will start asking you for help because of all the
stuff you put out. 99% of developers are “dark” — they don’t write or
speak or participate in public tech discourse. But you do. You must be
an expert, right? Your impostor syndrome will strike here, but ignore
it. Answer as best as you can. When you’re stuck or wrong, pass it up to



8 Chapter 1: Learn in Public

your mentors.

Eventually, youwill run out ofmentors andwill just have to keep solving
problems on your own, based on your accumulated knowledge. You’re
still putting out content though. Notice the pattern?

Learn in Public.

P.S. Eventually, they’ll want to pay for your help too. A lot more
than you’d expect.

1.6 Appendix: Why It Works

You might observe that I write more confidently here than anywhere
else in the book. This confidence is based on two things:

• Empirical foundation: I have studied the careers of dozens of suc-
cessful developers, and have personally heard from hundreds of oth-
ers since I wrote the original essay.

• Theoretical foundation: Everything here is reinforced by well un-
derstood dynamics in human psychology and marketing.

We take advantage of these laws of human nature when we Learn in
Public:

• The 1% Rule: “Only 1% of the users of a website add content, while

https://www.swyx.io/writing/learn-in-public
https://en.wikipedia.org/wiki/1%25_rule_(Internet_culture)


Appendix: Why It Works 9

the other 99% of the participants only lurk.” You stand out simply by
showing up.

• Cunningham’s Law: “The best way to get the right answer on the In-
ternet is not to ask a question; it’s to post the wrong answer.” Be-
ing publicly wrong attracts teachers, as long as you don’t do it in such
high quantity that people give up on you altogether. Conversely, once
you’ve gotten something wrong in public, you never forget it.

• Positive Reinforcement: Building in a social feedback mechanism to
your learning encourages more learning. As you build a track record
and embark onmore ambitious projects with implicit future promise,
your public activity becomes a Commitment Device.

• Availability Bias: People confuse “first to mind” with “the best”. But
it doesn’t matter — being “first to mind” on a topic means getting
more questions, which gives the inputs needed to become the best. As
Nathan Barry observed, Chris Coyier didn’t start out as a CSS expert,
but by writing CSS Tricks for a decade, he became one. This bias is
self-reinforcing because it is self-fulfilling.

• Bloom’s Taxonomy is an educational psychology model which de-
scribes modes of learning engagement — the lowest being basic re-
call. Learning in Public forces you toward the higher modes of learn-
ing, including applying, analyzing, evaluating, and creating.

• Inbound Marketing: Hubspot upended the marketing world by prov-
ing youdidn’t have to goout in front of people to sell. Instead, you can
draw them to you by making clear who you are and what you do, of-
fering valuable content upfront and leaning on the persuasive power
of Reciprocity and Liking.

https://meta.wikimedia.org/wiki/Cunningham%27s_Law
https://www.verywellmind.com/what-is-positive-reinforcement-2795412
https://en.wikipedia.org/wiki/Commitment_device
https://en.wikipedia.org/wiki/Availability_heuristic
https://nathanbarry.com/marco-polo/
https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/
https://www.hubspot.com/inbound-marketing
https://www.influenceatwork.com/principles-of-persuasion/


10 Chapter 1: Learn in Public

• Productizing Yourself: By creating learning exhaust, you can teach
people and make friends in your sleep. This disconnects your net-
working, income, and general Luck SurfaceArea fromyour time. Don’t
end the week with Nothing. This is Portable Personal Capital that
compounds over time and that you can take with you from company
to company.

1.7 Appendix: Intellectual History

I didn’t invent Learn in Public. The earliest mention I’ve found is
this retrospective on howNASAScientists do organizational Knowledge
Management. Since then, everyone from Jeff Atwood to Kelsey High-
tower to Kent C. Dodds attribute their success to some form of Learn-
ing in Public. Reid Hoffman, who studies great tech leaders from Brian
Chesky to JeffWeiner, calls it Explicit Learning. In fact, everyone you’ve
ever heard of, dating back to Plato and Aristotle, you’ve heard of be-
cause they wrote down and shared what they thought they knew. Your
learnings may outlive you.

I wasn’t the first to benefit from this, and I won’t be the last. The idea
is now as much yours as it is mine. Take it. Run with it. Go build an
exceptional career in public!

https://nav.al/productize-yourself
https://www.codusoperandi.com/posts/increasing-your-luck-surface-area
https://training.kalzumeus.com/newsletters/archive/do-not-end-the-week-with-nothing
https://training.kalzumeus.com/newsletters/archive/do-not-end-the-week-with-nothing
https://www.govloop.com/community/blog/how-do-rocket-scientists-learn-aka-knowledge-management-lessons-learned-at-goddard-nasa/
https://www.govloop.com/community/blog/how-do-rocket-scientists-learn-aka-knowledge-management-lessons-learned-at-goddard-nasa/
https://blog.codinghorror.com/how-to-stop-sucking-and-be-awesome-instead/
https://thepodlets.io/episodes/007-kubernetes-as-per-kelsey-hightower/
https://thepodlets.io/episodes/007-kubernetes-as-per-kelsey-hightower/
https://kentcdodds.com/blog/intentional-career-building
https://mastersofscale.com/brian-chesky-handcrafted/
https://mastersofscale.com/brian-chesky-handcrafted/
https://greylock.com/transformational-moments/
https://medium.com/@reidhoffman/those-who-teach-can-do-98a30e9a74ea

	Learn in Public
	Private vs Public
	Getting Started
	But I'm Scared
	Teach to Learn
	Mentors, Mentees, and Becoming an Expert
	Appendix: Why It Works
	Appendix: Intellectual History


